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Mutagen Formation during Commercial
Processing of Foods
by Cheryl A. Krone,*t Sophia M. J. Yeh,*
and Wayne T. Iwaoka*§

Levels of bacterial mutagenicity 3-17 times above spontaneous are generated during commercial thermal
processing (canning) of foods, particularly foods high in protein. The potential for other processing
operations, including pasteurization, dehydration, and concentration, to produce substances active in the
Ames Salmonella assay was also examined. Two heated fish model systems, canned salmon and fried sole,
were established by extracting mutagen precursors from fish tissues with water. The model system studies
suggest that the limiting reactants for mutagen formation differ from one food product to another, and
that Maillard type browning reactions are involved in mutagen production. Bisulfite treatment was found
to inhibit mutagen formation in modal systems and whole food products.

Isolation and partial characterization of the mutagens in both fried and canned pink salmon showed
that at least three distinct mutagens were present. These mutagens exhibited HPLC retention time patterns
on C18, cyano, and amino columns different than the major mutagens present in other cooked and grilled
meats and fish.

Introduction
The role of environmental carcinogens in human can-

cer has been the subject of considerable scientific re-
search in recent years. Foods are such a universal factor
in the human survival experience that it is not surpris-
ing that the question of potential human carcinogens in
foods has been of widespread interest. This symposium
has addressed primarily the formation, detection, and
identification of mutagens in cooked or broiled foods,
especially in meat and fish products. Recent reviews
have summarized the work of numerous investigators
showing that potent mutagens are formed during the
cooking of foods (1-5).

In many cases the structures of the substances re-
sponsible for the mutagenic activity have been eluci-
dated and fall mainly into the category of nitrogen-het-
erocycic polyaromatic amines. The levels of these
compounds found in cooked foods are generally low, in
the parts per billion range.
These mutagens are formed not only when foods are

heated to the nearly pyrolytic temperatures (> 300°C)
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which occur during gas flame grilling but also in the
course of more moderate heating processes such as
frying, roasting, or baking, where temperatures be-
tween 150 and 250°C are common. Foods encounter
these same temperatures during many commercial food
processing operations; however, little attention has
been focused on the influence of these processes on mu-
tagen formation.

This paper summarizes imformation available on the
presence of mutagens in commercially processed foods,
examines mutagen formation, its inhibition by specific
additives, and the nature of mutagen precursors. It also
discusses the partial characterization of mutagens
formed during thermal processing.

Occurrence of Mutagens in
Processed Foods
Heat is applied to food products during many com-

mercial food processing operations including those listed
in Table 1. The temperatures to which foods are exposed
can range from less than 1000C to greater than 150°C.

Pasteurization
This process usually involves heating a product

(e.g.milk or liquid egg products) to 60 to 80°C for up to
a few minutes to destroy pathogenic microorganisms.
The short times and relatively low temperatures used
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Table 1. Some commercial food processes which include heat
treatments.

Temperature of Product
Process heating medium, °C temperature, °C

Pasteurization -100 < 100
Concentration 100-125 <100

Open kettle
Vacuum evaporation

Drying 100-200 <100
Spray dry
Drum dry
Air dry

Thermal processing 100-135 100-110
Metal cans
Glass containers
Retort pouch

for pasteurization suggest that few mutagens would
form. Bjeldanes (6) found no mutagens in pasteurized
fresh milk or in milk refluxed up to 240 min. Rogers
and Shibamoto (7) were unable to detect mutagens in
milk or milk model systems which were heated at 100°C
for 2 to 6 hr. Green et al. (8) did report low levels of
mutagens (three times the spontaneous rate) in ultra-
high-temperature pasteurized milk (135°C for 1 sec,
then 20 min at 117°C). However, the histidine content
of the milk samples (which were applied directly to the
Ames test plates) was not taken into account and may
have contributed to the apparent increase in numbers
of revertants (9). Thus there is no substantial evidence
that pasteurization processes promote mutagen for-
mation.

Batter-Coated and Breaded Foods
Commercially produced batter-coated and breaded

convenience foods are heated in vegetable oil at about
200°C prior to packaging and freezing. Browning re-
actions occur during the heat treatment, with the extent
of browning dependent upon time and temperature of
heating and composition of the breading. Testing ex-
tracts ofa variety ofbatter-coated and breaded products
(including fish fillets, clams, shrimp, and fish and shrimp
sticks) did not reveal the presence of mutagenic sub-
stances (10). When these products were subjected to
additional heating, as they would be in the home by the
consumer, only at twice the manufacturer's recom-
mended times were low levels of mutagenicity found
(10). Deep fried batter-coated and breaded products,
doughnuts, and potatoes purchased at local restaurants
were also found to contain negligible levels of mutagens
(6,11).

In these products, the outer portion which receives
the most heat input is high in carbohydrate and rela-
tively low in protein. Products of this composition do
not tend to form the potent heterocyclic aromatic amine
type mutagens as readily as high protein content foods
like meats or fish.

Concentration
The evaporative concentration of solutions is one of

the most energy intensive unit operations. In the food
industry, concentration usually involves evaporation of
water, and this can be accomplished by heating in
steam-jacketed open kettles or various types of vacuum
evaporators. Fruit juices and syrups, dairy products,
and meat extracts are frequently concentrated prior to
further processing.
Food-grade beef extract is prepared by heating beef

tissue in water, removing the meat solids and fat, and
concentrating the liquid stock to < 20% of original vol-
ume at about 100°C. Potent mutagens have been found
to be present in beef extracts (12,13), with IQ (2-amino-
3-methylimidazo[4,5-flquinoline) and MeIQx (2-amino-
3,8-dimethylimidazo[4,5-fpquinoxaline) contributing al-
most 100% of the mutagenic activity in one sample (13).
Two commercial products that contained beef extract,
bouillon cubes, and a dried gravy mix were also found
to contain mutagens (12).
One novel technique for concentration of foods which

is currently being investigated at the University of
Washington is submerged combustion. This process fea-
tures the ability to concentrate solutions using temper-
atures - 75°C. An operating submerged combustion
unit causes the release of a stream of hot combustion
products below the surface of the solution being con-
centrated. The tremendous number of very small bub-
bles transfers heat to the solution and carries away
water vapor. The product that has been most exten-
sively studied in this submerged combustion system is
a fish protein hydrolyzate (FPH) (14). The FPH was
produced by digesting minced fish flesh with proteolytic
enzymes and, in this study, was concentrated to two
levels of soluble solids by submerged combustion prior
to spray drying. Extracts of the final products were
tested for mutagenicity using the standard plate test
described by Ames et al. (15) with and without the

Table 2. Mutagenicity of fish protein hydrolyzates concentrated
by submerged combustion at different pHs.

Mutagenicity activity ratio (MAR)a
Sample pH - S9b + S9c
Spray dry without 3.5 0.5 2.6
concentration 4.5 0.6 2.5

6.5 1.1 2.8

Concentrate to 3.5 0.5 1.8
15% solids 4.5 2.0 59.0

6.5 0.9 7.2

Concentrate to 3.5 toxic 13.0
25% solids 4.5 toxic 64.0

6.5 toxic 6.3
as. typhimurium TA 1538, basic extracts, the equivalent of 1.6 g

dry fish protein hydrolyzate (FPH) per plate. The mutagenic activity
ratio (MAR) is calculated by dividing the number of revertants on
plates containing extracts by the spontaneous reversion rates.

b Without metabolic activation.
'With 80 F.L rat liver homogenate preparation per plate.
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addition of 80 ,uL Aroclor-induced rat liver homogenate
preparation (S9) per plate.
The procedure used to prepare the extracts of fish

protein hydrolyzate has been described elsewhere (16)
and includes homogenization of the product with three
volumes of methanol, filtration and removal of the meth-
anol from the filtrate by rotary vacuum evaporation.
The methanol-soluble substances were then dissolved
in water at pH 2.5, partitioned three times with meth-
ylene chloride, and the aqueous phase adjusted to pH
10 with 50% NaOH and again partitioned three times
with methylene chloride. The organic extracts were
dried over sodium sulfate, the methylene chloride re-
moved by rotary evaporation and the residues dissolved
in known volumes of Spectro-grade dimethyl sulfoxide.
This procedure, unless specified otherwise, was used
throughout the studies reported here to produce acidic
and basic extracts for mutagenicity testing.
As shown in Table 2, concentration of FPH by sub-

merged combustion produced high levels of mutagens,
particularly when concentration was carried out at pH
4.5. Spray drying without concentration produced little
or no mutagenicity. The basic organic extracts con-
tained most ofthe mutagenicity which was detected only
by S. typhimurium strain TA 1538 with metabolic ac-
tivation. No mutagenicity was observed using S. ty-
phimurium strain TA 100.
The amino acid patterns of all the FPH were found

to be very similar, but when they were included in the
diets of rats in order to determine protein efficiency
ratios (PER), those concentrated by submerged com-
bustion at pH 4.5 were found to produce significantly
lower PERs (14). Whether this was due to toxic factors
in the FPH, differences in bioavailability of various nu-
trients or acceptability of the diet was not determined.

Table 3. Mutagenicity of spray-dried dairy products.

MARa
Sample Extractb - s9c + S9d
Instant nonfat dry milk Acid Toxic 1.2

Base 1.6 1.1

Instant 0.5% fat dry milk Acid 1.5 0.6
Base 0.7 4.3

Noninstant nonfat dry milk Acid Toxic 0.5
Base 0.8 1.2

Noninstant nonfat dry Acid Toxic 1.1
milk, reconstituted Base 0.8 1.2
respray-dried

Whey protein concentrate Acid 1.2 0.9
Base 0.7 1.1

aMutagenic activity ratio using S. typhimurium TA 1538. The
MAR is calculated by dividing the number of revertants on plates
containing extracts by the spontaneous reversion rates.
bMethylene chloride extracts equivalent to 5 g dry product per

plate.
"Without metabolic activation.
d With 80 ,uL S9 preparation per plate.

There are several possible explanations for the mu-
tagenicity that was observed in the concentrated sam-
ples, including the interaction of food components with
reactive combustion products of the flame, even though
in theory only CO2 and H20 are formed when the fuel
is burned. Also since the concentration steps were 60
to 120 min in duration, the types of mutagen formation
reactions shown to occur in traditional concentration
processes (e.g., production of beef extract) or in model
systems may be responsible for mutagenicity in this
product. All of the water-soluble components of fish
muscle are present in the FPH, and most proteins have
been hydrolyzed to amino acids and small peptides, pro-
ducing high levels of these possible mutagen precursors
in the solutions being concentrated.

Dehydration
As mentioned above, the spray-drying process did not

seem to produce mutagenic substances. In spray drying,
liquid droplets are dispersed as a fine spray into a
stream of heated air in a drying chamber. The hot air
supplies the heat of vaporization, removes the evapo-
rated moisture, and transports the dried solids to the
collection portion of the drier. Dairy products, fruit
juices, coffee, and eggs are commonly spray-dried (17).
Table 3 lists a variety of commercially spray-dried prod-
ucts and their mutagenicities. Even a spray-dried non-
fat milk which was reconstituted and again spray-dried
in our pilot plant did not exhibit mutagenicity. These
data seem to confirm the observation that spray drying
is a process that does not encourage mutagen formation
reactions, probably due to the product's short time of
exposure to heat.
Many other types of driers are used for dehydration

of fruits, vegetables, cereals, pasta products, etc. (18).
The driers can be batch (kiln or cabinet) or continuous
and use heated air up to -200°C, or other modes of heat
transfer (e.g., infrared) (17,18). Vacuum driers use re-

Table 4. Mutagenicity of some commercially canned meats and
seafoods.

MARa
Product - S9b + s9c
Pink salmon (brand #1) 0.8 17.6
Beef broth 2.2 13.0
Pink salmon (brand #2) 0.6 11.9
Red salmon 1.3 8.5
Beef stew (retort pouch) 0.9 7.4
Mackerel 1.2 7.2
Roast beef hash 0.4 6.0
Chili with beans 1.1 4.9
Roast beef 2.1 4.6

a Mutagenic activity ratios for basic extracts from 80 g product using
S. typhimurium strain TA 1538. Mean spontaneous reversion rate
without S9 was 9 and with S9 was 24 revertants. An MAR greater
than 2.5 is considered a positive test for mutagenicity.
bWithout metabolic activation.
'With 80 ,uL S9 per plate.
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duced pressures and temperatures. During the drying
ofvegetables and fruits, browning reactions (enzymatic,
Maillard type, and carmelization) are likely to occur
unless sulfites or other browning inhibitors are applied.
In some cases this browning is important for develop-
ment of desirable sensory attributes, as in raisins,
dates, and figs.
At least one-half million tons of dried fruits are pro-

duced annually in the U.S. (17). Stich et al. (19) have
examined the chromosome-damaging activities of eight
widely consumed dried fruits. It was found that aqueous
extracts, tested directly or after lyophilization, pro-
duced significant increases in chromosome aberrations
(exchanges or breaks) in Chinese hamster ovary cells.
Whether the substances responsible for these changes
present a hazard to humans is unclear.

Commercial Thermal Processing
Canned (thermally processed) foods are a category of

products which receives one of the most extensive heat
treatments during processing. Although the tempera-
tures used in thermal processing are not high (110-
125°C) compared to many cooking methods (150-300°C),
the treatments are often quite long in duration, com-
monly exceeding 1 hr. Since time, as well as tempera-
ture, has been found to influence the extent of mutagen
formation during cooking (20,21), it seemed likely that
mutagens would be present in these products, especially
ones high in protein. If mutagens were found in canned
foods, they may pose a risk to consumers because of the
quantities of these products being consumed. In the
U.S. over 80% of the pink salmon and tuna catches are
processed by canning, and nearly 3 billion pounds of
canned meats and 1.4 billion pounds of canned fishery
products are produced annually (22).

Table 4 shows some canned food products which were
found to contain mutagenic substances. Beef and beef-
containing products consistently displayed mutagenic
activity. However, seafoods were more varied in their
mutagenic response. Canned pink salmon was the most
mutagenic canned food tested, while tuna (water pack),
sardines, and clams contained no, or very low levels of
mutagens (16). Basic extracts of canned turkey,
chicken, beef stew, ham, Vienna sausages, and corned
beef also exhibited mutagenicity less than 2.5 times the
spontaneous mutagenicity, as did raw salmon, beef,
chicken, and turkey (16).
The reasons for the wide variation in mutagenicity in

high protein foods is not clear but is undoubtedly related
to differences in their chemical compositions and/or the
processing techniques used in each case. For example,
it is known that molluscs and crustaceans contain little
or no creatine or creatinine (23) and, at least in model
systems, these compounds have been found to be im-
portant mutagen precursors (23-28). Also, tuna is sub-
jected to a steam precook before being packed into cans
and thermal processed. This removes some of the lipids
and water-soluble components of the flesh. Salmon, on

the other hand, is placed directly into cans, sealed and
processed without any pretreatments.
An important class of processed food (canned prod-

ucts) was thus found to contain mutagens which possess
the same extraction behavior (i.e., present in basic or-
ganic extracts of food) and Salmonella strain specificity
as mutagens from grilled or fried meat and fish. Many
of the mutagens in cooked foods have been found to be
carcinogenic when included in the diets of mice and rats
(29-32). While the average mutagenicities detected in
canned foods are much lower than those found in many
fried or grilled foods, canned foods are widely consumed
and, over time, may contribute to any overall risk of
consuming the mutagens in heated foods. On the other
hand, thermal processing is one of the more important
techniques that have been developed for extending the
shelf life of perishable foodstuffs, and there is no doubt
that thermal processing of foods has increased the qual-
ity and variety of foods available to the consumer. It
was thus apparent that further studies of mutagen for-
mation in this important category of food products were
warranted.

Studies of Mutagen Formation
during Thermal Processing

It was presumed that the heat treatment received by
the foods during canning was responsible for the ap-
pearance of mutagenicity (the raw products contained
no mutagens). Thus any parallels that might exist be-
tween thermal processing (canning) and the more well
studied application of heat during cooking procedures
were studied. Frying of meat and fish products usually
results in localization of the mutagens near the surface
ofthe product in contact with the heating source (33,34).
This possibility was investigated in canned salmon by
dividing the contents of the can (1 lb. size) into three
portions, a cylindrical core (-5 cm in diameter), the
remaining outer cylindrical shell (-1 cm wall thickness)
and the broth which was first drained from the can.
Each portion was extracted and tested in the Ames
assay. It was found that about 76% of the mutagenicity
was located in the outer shell (about 50% of total weight
can contents) while the core (30% of weight) and broth
(20% of weight) contained 17% and 7% of the total mu-
tagenicity, respectively. If an outer shell of smaller wall

Table 5. Effects of reconditioning on mutagenicity of flesh and
broth from canned pink salmon.

Revertants/
Sample Treatment 80 g equiv.a
Canned flesh Single process 289 ± 34
Canned flesh Reprocess 611 ± 91
Fluids from canned flesh Single process 242 + 27
Fluids from canned flesh Reprocess 537 ± 46
aSalmonella typhimurium TA 98 plus 80 ,uL S9 per plate with

basic extracts. The means ± SD for four plates are presented.
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FIGURE 1. Effects of successive washings on mutagenicity of fried
ground fish tissue. The restoration of mutagenicity upon addition
of increasing amounts of the freeze-dried water extract is also
shown.

thickness could be obtained, the differences would prob-
ably be even more marked.

Reprocessing
During cooking procedures, an increase in heating

time usually results in enhanced mutagen formation. In
the canned salmon industry, circumstances arise which
require that a product be reprocessed or reconditioned.
This obviously results in an increase in total heating
time. During reprocessing of salmon the single pro-
cessed cans are opened, the fluids drained and the flesh
inspected and repacked into new cans. Brine or water
is then added, the cans sealed, and the heat treatment
repeated.
When this procedure was carried out in our labora-

tory, a twofold increase in mutagen content of the flesh
and the drained broth was observed (Table 5). It ap-
peared that the mutagen formation reactions had not
gone to completion during the initial heat treatment
and, as is the case with cooking, an increase in heating
time increased mutagen formation. The fact that mu-
tagenicity of the broth from the single processed fish
also increased significantly upon reprocessing suggested

Table 6. Mutagenicity of stock and solids from salmon and
ground beef.

MAR (80 g eq.)a
Sample Not heat processed 116°C for 85 min.
Ground beef 1.1 3.7
Washed beef solids 0.9 1.4
Beef stock 3.2 9.3

Pink salmon 0.9 4.3
Steamed flesh 1.3 8.7
Salmon stock 1.4 35
aMutagenic activity ratio, S. typhimurium TA 98 with metabolic

activation and the extracts from 80 g of product. The MAR is cal-
culated by dividing the number of revertants on plates containing
extracts by the spontaneous reversion rate.

that the mutagen precursors were water-soluble sub-
stances that were released from the flesh during the
initial heating and reacted to form mutagens during the
additional heat processing.
Mutagen Precursors
The water solubility of the mutagen precursors was

investigated further in several food systems including
canned ground beef and salmon and fried Dover sole.
An aqueous extract of Dover sole was prepared by thor-
oughly blending the ground raw fish flesh with an equal
volume of distilled water and filtering through glass
wool using slight suction. The retained solids were col-
lected and portions rewashed as above one or two more
times. Filtrate from the initial wash of 600 g of fish was
freeze-dried. The ground fish flesh and the washed mus-
cle tissue were formed into 60 g, 0.5 to 0.75 cm thick
patties and fried (Teflon coated electric skillet, without
added cooking oil, at 190C, 6 min on each patty side).
Figure 1 shows that with each successive wash, mu-
tagenicity decreased to about one-half the previous
level. Thus the mutagen precursors appear to be sub-
stances easily extracted with water from ground fish
flesh. To confirm that the precursor compounds were
indeed present in the water extract, differing amounts
of freeze dried filtrate (dissolved in 15 mL water) were
added back to fish flesh which had been washed three
times. After thorough mixing, the fish was formed into
patties and fried as above. Testing basic extracts of the

Table 7. Effects of freezing and steaming treatments on
mutagen formation in canned pink salmon.

Revertants produced/80 g equiv.a
Frozen,

Heat treatment Fresh salmon thawed salmon
Steamb 10 ± 7 18 ± 32
Canc 98 ± 24 270 ± 32
Steam and can 232 ± 37 237 ± 25

as. typhimurium strain TA 98 with 80 ,uL S9 per plate and basic
extracts.
bWrap in foil, steam at 100°C for 1 hr.
'Place flesh in 307 x 200.25 cans and process in retort for 85 min

at 116 °C.
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fried product showed an increase in mutagenicity pro-
portional to the amount of freeze-dried filtrate added to
the washed tissue (Fig. 1).
The nature of mutagen precursors in two canned food

systems was also investigated. Ground beefwas treated
in a manner similar to the ground sole above and the
solids and filtrate (stock) placed in separate cans and
heat processed at 116°C for 85 min. For the salmon,
steaks of about one-half inch thickness were wrapped
in foil, steamed for 1 hr, the fluid which left the tissues
during steaming was drained, and the flesh and stock
heat processed separately. Table 6 shows that in the
case of both the beef and salmon, mutagenicity in-
creased upon heat processing. Especially noteworthy
are the high levels of mutagenicity in the beef and
salmon stocks.
There were also differences observed between the

beef and salmon systems. For example, the washed beef
solids exhibited lower mutagenicity than the canned
whole beef, as expected, because precursors were re-
moved to the stock. The steamed fish, however, showed
an increase over the nonsteamed sample, even though
it was evident that, in this case also, some of the pre-
cursors were taken from the flesh during steaming (i.e.,
the drained stock produced mutagens when heat pro-
cessed). The increased mutagenicity in the steamed
flesh may have resulted from conversion of mutagen
precursors remaining in the flesh to their more reactive
forms. For example, creatine could be converted to cre-
atinine under the steaming conditions (24), thus en-
hancing the rate of mutagen formation during canning

Table 8. Mutagen formation in canned salmon and fried sole
model systems.

MARa
Canned Fried

Additive salmon system sole system
Noneb 2.0* 2.5*
Heat only 15.6 45.3
Buffer at pH 4.6 17.8 NTC
Buffer at pH 8.0 9.6* NT
Ascorbic acid (1%) 1.8* NT
Nitrite (125 ppm) 4.7* NT
Ribose
(1% salmon, 0.1% sole) 11.4 74.7*

Dihydroxyacetone (0.1%) NT 80.5*
Creatine

(0.7% salmon, 0.1% sole) 27.1* 47.9
Alanine (0.1%) NT 44.3
Sodium bisulfite (0.5%) 0.4* 2.5*
Sodium borohydride (0.5%) NT 3.9*

a Mutagenic activity ratios for basic extracts from 80 g salmon stock
or the equivalent of 100 g raw Dover sole. S. typhimurium strain TA
1538 with 80 p1L S9 per plate.
bUnheated salmon stock or evaporated sole supernate prior to

130°C treatment. All other samples were heated as follows: salmon
stock placed in cans with additives, sealed and heated in retort for
85 min at 116°C; evaporated sole supernate (45- 53% moisture), heated
at 130°C for 12 min.
eNT = not tested.
* Significantly different than heated only sample (p = 0.01).

of steamed versus nonsteamed samples, if creatinine
were an important precursor in this system.

It may also be that the steaming disrupted cellular
structure within the tissues and facilitated the mixing
of mutagen precursors. This possibility is strengthened
by the observation that merely freezing and then thaw-
ing the flesh prior to canning also led to a similar dif-
ference between the fresh and pretreated (frozen)
canned product. Freezing and thawing also disrupts
membranes and intracellular organelles, and denatures
proteins. Combined freezing and steaming prior to can-
ning did not further increase the mutagen content (Ta-
ble 7).

Model System Studies
The preceding experiments and the test of repro-

cessing suggested that a fish broth or stock might serve
as a model system to further investigate mutagen for-
mation during thermal processing or frying. Table 8
illustrates the results of studies which used fish extract
model systems and various additives, and pH adjust-
ments to help characterize the types of reactions in-
volved in mutagen formation. The fish extract used for
the fried Dover sole model system was prepared by
blending ground fish tissue with equal volumes of dis-
tilled water, filtering and rewashing the solids once. The
combined filtrates were heated to near 100°C for 20 min,
and the heat precipitated proteins removed by centrif-
ugation at 5000 rpm for 10 min. The supernatant was
filtered through Whatman No. 1 filter paper and used
in the model system studies. Preliminary heating stud-
ies with this Dover sole supernatant and the residue
from centrifugation (heat precipitated proteins) showed
that only the supernatant contained compounds capable
of producing mutagens when heated. This method for
production of the supernatant is very similar to that
used by Taylor et al. (35,36) to obtain a soluble beef
supernatant (S2) for a model beef boiling system.
To simulate the conditions that exist during frying,

the sole supernatant was first reduced in volume by
heating in an open beaker at temperatures less than
100°C until the moisture content was 45 to 53%. This is
near the moisture content (49 + 3.8%) found in the crust
of ground beef fried on six different surfaces (20). This
residue was then heated for 12 min in a 150-mL beaker
placed in an oil bath maintained at 130°C.
A more simple scheme was used to produce the

canned salmon model system. Pink salmon flesh was
heated to about 90°C for 1 hr in a volume of distilled
water equal to the weight of the flesh. The mixture was
filtered through glass wool and Whatman No. 1 filter
paper, the filtrate placed in cans, in some cases including
the additives listed in Table 8, sealed, and heat-pro-
cessed at 116°C for 85 min.
Adjustment of the pH of the salmon stock prior to

canning had varied effects. Decreasing the pH to 4.6
(from an initial pH 6.6) did not alter the overall muta-
genicity, while buffering at pH 8.0 appeared to cause a
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decrease. It would seem from this data that mutagen
formation reactions were favored at pH's less than neu-
trality. If Maillard-type browning were the only reac-
tions involved in mutagen formation, the above obser-
vations would probably be unexpected. Taylor and co-
workers (35) have reported that there are two pH op-
tima for mutagen formation in a boiled beef model sys-
tem, one at pH 4 in the acidic region, and one at pH 9
at alkaline pH. This may also be the case for the canned
salmon model system and is one area that requires fur-
ther investigation.

Addition of 1% ascorbic acid decreased mutagen for-
mation significantly in the canned salmon model system.
Ascorbic acid (AA) is a carbonyl compound which can
itself participate in browning type reactions. In fact,
the samples with AA added were visibly more brown
in color than the control samples. AA is also a mild
reducing agent and an acid. Its influence on mutagen
formation does not seem to be through its acidic prop-
erties since the pH of the salmon stock with 1% AA was
4.4, near that where the buffering with phosphate did
not change mutagenicity. Recently Namiki and Hayashi

Creatine
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FIGURE 2. Dose-response relationships for addition of ribose, alan-
ine and creatine to the fried Dover sole model system.

(37) reported on a novel pathway to browning in the
Maillard reaction, one involving free-radical formation
in the very early stages of browning, prior to Amadori
rearrangement. They showed that AA could, through
its reducing activity, enhance the formation of the im-
portant free radical intermediate, an N,N'-disubsti-
tuted pyrazine. Nitrite is also a reducing agent and its
influence on mutagen formation may be through this
same mechanism.
Some browning reaction intermediates do enhance

mutagen formation in model systems. It has been sug-
gested that 2-methylpyridines may be incorporated into
the quinoline portion of IQ and MeIQ (2-amino-3,4-di-
methylimidazo[4,5-f]quinoline) and 2,5-dimethylpyra-
zine may form part of the quinoxaline of MeIQx (24). If
the free-radical pathway which is encouraged by AA
were followed and mutagens similar to those mentioned
above formed, they would contain alkyl substituents on
the nitrogens of the quinoxaline portion of the molecule.
However, mutagens of this configuration have not yet
been identified. Thus, the N,N'-disubstituted pyrazines
may not be as readily converted to mutagens as some
other browning reaction intermediates and AA and ni-
trite may be decreasing mutagenicity by diverting mu-
tagen precursors through a pathway, which creates non-
mutagen forming intermediates.
The addition of ribose and dihydroxyacetone to the

fried sole system produced a significant increase in mu-
tagenicity, while ribose supplementation of the canned
salmon system had little effect (Table 8). This disparity
is difficult to explain unless the limiting mutagen form-
ing reactants are different in these two products. This
conclusion is supported by the fact that creatine resulted
in enhanced mutagen formation in the salmon system
but not in the sole supernate.
One major difference between salmon and sole is in

their lipid contents; the sole used in this study contained
0.7% lipid while the salmon, a moderately fatty fish,
was about 5% lipid. The lipids in marine fishes contain
numerous highly unsaturated fatty acids that are prone
to undergo autooxidation. This oxidation process can
produce numerous carbonyl products including various
aldehydes, ketones and enols (38).

Table 9. Effect of Maillard browning inhibitors on mutagen
formation in whole foods.

MARa
Treatment prior Canned Fried
to heating pink salmonb sole filletsc
None 8.9 49.6
0.5% added NaHSO3 1.2 8.0d
5% NaHSO3 dip 3.9 11.5
20 min soak 5% NaHSO3 6.6
1% added ascorbic acid 3.8

a Mutagenic activity ratio for basic extracts from 80 g canned salmon
or 20 g fried sole using S. typhimurium TA 98.
bCanning at 116°C for 85 min.
c Fry at 6 min per side at 190'C.
d Ground sole patties plus bisulfite.
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Pokorny (39) showed that browning reactions could
proceed in model systems containing proteins and un-
saturated lipids from fish, both with and without water
being present. Under conditions similar to roasting and
frying, the lipids were found to decompose and be ac-
companied by the formation of brown pigments. Deep
fat frying of fish in thermally oxidized cooking oils led
to a greater loss in available lysine in the fish than frying
in fresh oils (40). The decrease in available lysine was
thought to be due to browning type reactions. Fatty
acids can produce mutagenic substances when heated
with creatine and amino acids (41), and these mutagens
were found to form at temperatures as low as 100°C
with the more highly unsaturated lipids producing the
highest levels. Thus lipids or their breakdown products
may be as, or more, important than sugars in the mu-
tagen formation reactions in salmon.

It was found that the enhancement of mutagen for-
mation by ribose in the sole model system was limited
to the concentration range 0.02 to 0.1% of added ribose
with amounts greater than 0.1% producing no further
increase in mutagen formation (Fig. 2). It thus appears
that other necessary reactants in the system were ex-
hausted and became limiting at the higher ribose con-
centrations. Figure 2 also shows the lack of effect of
added alanine or creatine in the fried sole system.

Taylor et al. (28) found that while additional creatine
phosphate and tryptophan enhanced mutagen formation
in their beefmodel system, other amino acids and sugars
had little effect. Iwaoka et al. (42,43) also showed that
ammonium ions added to aqueous extracts of a baked
high carbohydrate product (biscuits) led to mutagen
production, while this was not the case for a high protein
product (ground beef).

Overall, these data suggest that differences in the
relative concentrations of carbonyl and nitrogenous
compounds present in various foods play a role in the
generation of different types and levels of mutagens
during heating. They also suggest that Maillard type
reactions may be involved in mutagen formation and
browning reaction inhibitors might diminish the levels
of mutagens. As seen in Table 8, the introduction of
NaBH4 or NaHSO3, both of which interact with car-
bonyl groups to block browning reactions (44,45), elim-
inated mutagen formation in the model systems, thus
supporting the above conjecture.
The model systems also showed that all the compo-

nents necessary for mutagen formation were water-sol-
uble, heat-stable, polar substances that could easily be
washed from fish tissues. These studies pointed out that
mutagens can form in foods heated at low temperatures,
around 115°C, which is lower than those used in most
studies of cooked foods and even most model systems.
Mutagens were also shown to form at the high moisture
levels found within canned food systems. This is in con-
trast to most cooked foods where it has been shown that
mutagen formation usually accompanies the dehydra-
tion which occurs at the surface of foods during frying,
grilling or roasting.

The effectiveness of browning reaction inhibitors in
whole food systems was also examined. As little as 0.2%
sodium bisulfite thoroughly mixed into ground sole de-
creased the mutagenicity of fried patties by 50% and at
a level of 1% eliminated mutagen formation. Sodium
bisulfite also reduced the mutagenicity of canned salmon
and fried sole fillets when applied by various other
means (Table 9). Thus the model systems can provide
a simple method for evaluating techniques (such as bis-
ulfite addition) which may modify mutagen formation
during heating of foods.
However, model systems do not always duplicate ex-

actly the processes occurring in whole foods. In very
simple model systems (26,27), combining creatine, glu-
cose and glycine, MeIQx(2-amino-3,8-dimethylimi-
dazo[4,5-f]quinoxaline) was found to be the major mu-
tagen formed (90%), with small quantities of 3,7,8-
diMeIQx also present (10%). When threonine was used
in place of glycine, twice as much 3,4,8-diMeIQx (2-
amino-3,4,8-trimethylimidazo[4,5-f]quinoxaline) was
formed as MeIQx (46). In food-grade beef extract, which
is produced by concentrating the water-soluble com-
ponents of beef tissue, MeIQx comprised about 65% of
the mutagenicity with the remainder being contributed
by IQ (13). In contrast, a model beef boiling system
produced IQ, Trp-P-1 (3-amino-1,4-dimethyl-5H-pyr-
ido[4,3-b]indole) and Trp-P-2 (3-amino-1-methyl-5H-
pyrido[4,3-b]indole) in varying proportions depending

25

In

o

4-i 4-

o C
L) cl
C..

a) m
0) cr

Cu 0)

C-

20

15

10

5

0
3 6 9 12 15 18

Heating time (minutes)

FIGURE 3. Dependence of mutagen formation on time in a fried
Dover sole model system at 125°C. Mutagenic activity ratios are
for basic extracts of the heated model system using S. typhimu-
rium strain TA 1538 with metabolic activation.
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lementation of the system with creatine phos- perature was a much more important variable than time
tryptophan and FeSO4 (28). MeIQx did not ap- in describing mutagen formation in fried hamburgers.
form under the conditions used (100°C). Taylor (35) investigated the time dependence of mu-
ied beef, a major mutagen produced is MeIQx tagen formation in a boiled beef system and found an
30% of total mutagenicity), with significant exponential increase in mutagenicity over a 30-hr boil-

s of diMeIQx and smaller quantities of IQ (4- ing time. This same nonlinear curve was observed for
resent depending on temperature of heating heating the fried sole supernate system at 125°C for
Felton et al. (47) also found that at least 10 times up to 18 min (Fig. 3). When a semilogarithmic
nutagens were present in fried beef. Thus as plot of the data in Figure 3 was made, a straight line
.g as it may be to equate mutagen formation in (r = 0.984) was obtained (not shown).
,ystems to that in whole foods, the complex na- A quantitative measure of the temperature depen-
the physical and chemical processes taking place dence of mutagen formation in this fried sole system
heating makes this difficult at present. was also examined. Heating for 12 min at temperatures

from 100 to 150°C produced a linear relationship when
ts of Time and Temperature on the log revertants produced per time per gram of prod-

uct was plotted versus the reciprocal of absolute tem-
gen Formation perature (an Arrhenius plot). Strictly speaking, in order
and temperature both play roles in the mutagen to apply the Arrhenius equation, the temperature of the
an in model systems and during cooking of foods. reaction mixture should be used, rather than the tem-
tg temperatures from 150°C to 3000C, mutagen- perature of the heating medium. The fried sole system
tially increased rapidly in ground beef and then simulates the phenomena occurring at the surface of
a plateau (20,21). A similar pattern was shown fried products. The moisture content of the evaporated
during the frying of sole fillets (48). Bjeldanes sole supernatant which was heated at the various tem-
wed by multiple regression analysis that tem- peratures listed above averaged 49%, similar to thatfound in the crusts of fried ground beef. The evaporated

supernate residue was spread thinly in beakers during
Log k = 12.65 - 4090 heating, and it was found that during heating in this

T manner, the residue increased in temperature rapidly
N TA1538 Revertants/12 minutes and soon reached a plateau, the relative level of which
NNN /20g equivalent corresponded to the temperature of the heating me-

N (sole model system) dium. This probably explains why a linear relationship
(r = 0.975) was observed in the Arrhenius plot (Fig.

Ns 4), even though the temperature of the heating medium
was used rather than the actual temperature of the

\ s system (which was available for only a few of the eight\ temperatures used in the heating experiment).
Canned solid products like salmon are heated pri-

marily by conduction and the thermal conductivity of
Log k = 23.8 - 8500\ these types of products is rather low (49). The surface

k- heat-transfer coefficient for processing in condensing
TA98 Revertants/85 minutes steam is, however, large in comparison. Thus the tem-
/80 g equivalent (canned) perature of the product near the can wall rapidly ap-

proaches the temperature of the heating medium and
remains there throughout the process time. This is a
major factor in the observation that excessively high
processing temperatures will cause severe degradation

Lt ,, , , , of the food near the container wall long before the food
2.4 2.5 2.6 2.7 2.8 at the center of the can has reached the process tem-

perature (50). Vitamin and amino acid destruction has
1 x 103 been shown to occur to a greater extent in the outer

T(ok) compared to the inner portions of the canned product
Arrhenius plots of mutagen formation in a fried Dover (51,52), and data presented in an earlier section also

odel system and in canned pink salmon as a function of showed that mutagen levels were higher in the parts of
rature. The Arrhenius equation in the form, log k = log A the product nearest the can wall. These phenomena
/2.303RT), allows the activation energy (Ea) to be estimated probably contribute to the linear Arrhenius plot (r =
,he slope of the least-squares regression line through the 0.996) obtained when mutagenicity data for canned
I points. In this equation, k is the rate of mutagen formation
ertants produced/time/gram-equivalent, T is absolute tem- salmon were plotted versus process temperature and
Ire, R is the gas constant (1.99 cal/mole), and A is a constant not product temperature (Fig. 4). The activation ener-
teristic of the reaction. gies derived from the slopes of the regression lines
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products. Canned pink salmon was thus prepared using
/ / three recommended processes (53) of equivalent le-

thality: 110°C for 139 min, 116°C for 85 min, and 121°C
for 64 min. As seen in Table 10, there was no difference

evertants/12 minutes/80g equivalent I in mutagen formation during these widely different pro-
(frie sole system) cesses even though the time varied by over a factor of(fried sole system)/ / two, while the temperature was changed by only 10°C.

I / As mentioned earlier, temperature was found to be a
more important variable than time in mutagen forma-

I / tion during cooking (20). This finding also seems to beI / borne out in the canned food system.
I / The above experiments on thermal processing in-

I / volved metal cans as containers. An increase in the use
of retort pouches can be expected in the future because
of their advantages in lower weight and energy savings.

I / It is interesting to note that the only retort pouch prod-
/ / . uct which was examined in our studies (beef stew) con-
I Revertants/85 minutes tae/ /8gReqivalents5 (nnued tained significantly higher levels of mutagenicity than

.
/ a similar product in a standard metal can. The higher

I__ --A surface-to-volume ratio for products packaged in retort
60 80 100 120 140 160 180 pouches may contribute to the difference. Recently the

FDA (54) has increased the maximum retort tempera-Temperature C tures at which laminates can be used from 121°C to
135°C. The possibility that mutagen formation might be
significantly increased by this change, as suggested by

leoretical rates ofmutagen formationat different tem- the above kinetic studies, should certainly be investi-
or canned pink salmon and a fried Dover sole model tedogated.

through the points were found to be 39 kcal/mole for
canned salmon and 19 kcal/mole for the Dover sole sys-
tem.
Using these Ea values, theoretical rates of mutagen

formation at higher temperatures were calculated and
are shown graphically in Figure 5. These data seem to
indicate that heating at temperatures above about 140MC
would lead to dramatic increases in mutagen formation.
This does seem to be the case for fried ground beef
(20,21). For the thermal processing of salmon (and most
conduction heating high protein products), the highest
retort temperatures used are generally not greater than
125°C (53) for the reasons mentioned above (nutrient
destruction and scorching of the product near the can
wall).

Figure 5 also suggests that mutagenicity should not
be significantly different for the range of processing
temperatures (110°C to 125°C) established by National
Food Processors Association (53) for these types of

Table 10. Effects of process time and temperature on mutagen
content in canned pink salmon.

Temperature, °C Time, min MARa
100 139 12.4 ± 0.8
116 85 10.2 ± 1.6
121 64 10.1 ± 1.8
0MAR = number of revertants on plates containing fish extract

divided by the spontaneous rate. S. typhimurium TA 98 with 80 ,uL
S9 per plate was used with the basic extracts from 80 g of product.

Characterization of Mutagens in
Canned and Fried Pink Salmon

Before any decisions on the risk or safety of consum-
ing a mutagen containing product can be made, the iden-
tity of the compounds responsible for the mutagenicity
must be known. In the case of most mutagens formed
during heating of foods the levels are quite low, usually
low or less than parts per billion, and this makes the
above task very difficult.
To obtain information on the mutagens present in

heated pink salmon, basic extracts of both the canned
and fried product were fractionated using HPLC and
C18, cyano, and amino columns. In both products, three
major fractions from the initial C18 column separation
possessed mutagenic activity. One fraction exhibited a

Table 11. Relative proportions of the three major mutagens in
canned and fried pink salmon.

% of total mutagenicitya
Product Mutagen lb Mutagen 2c Mutagen 3d
Canned salmon 39 35 25
Fried salmon 24 67 9

as. typhimurium TA 98 with S9.
bFractions eluting between 18 and 22 min. during separation of

basic extracts on C18 column (0.46 cm ID x 25 cm, 10 ,um particle
diameter) and a methanol/water gradient; 30% methanol/70% water
increased linearly to 80% methanol in 50 min.

'Fractions eluting between 26 and 30 min.
d Fractions eluting between 52 and 58 min.
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FIGURE 6. Chromatogram of C18 HPLC separation of a basic extract from canned pink salmon with bar graphs showing the mutagenicity of
fractions (0.5% of each fraction per Ames test plate, spontaneous revertants have been subtracted). The retention times of IQ, MeIQ and
MeIQx were 20 + 0.2, 23 - 0.6, and 24.5 ± 0.9 min, respectively.

retention time in the same range as IQ while the other
two fractions were somewhat more nonpolar than the
IQ type mutagens (Fig. 6). The contribution to total
mutagenicity was approximately equal among the three
fractions of the canned product; however, the mutagen
with intermediate retention time comprised about two-
thirds of the total mutagenicity in the fried product. It
appeared to form at the expense ofboth other mutagens
(Table 11).
Each of the three fractions separated by the initial

high pressure liquid chromatography was further pur-
ified by additional HPLC on C18 and cyano and/or amino
columns. After each stage of HPLC purification, por-
tions of each fraction were treated with nitrite or hy-
pochlorite (55,56) and again tested for mutagenicity.
The mutagens in all fractions showed the typical pat-
terns of the IQ type of mutagens, that is, resistance to
nitrite inactivation and total loss of mutagenicity upon
exposure to hypochlorite (Table 12).
Even though 14 kg of canned salmon had been used

as starting material for mutagen isolations, the amount
of material remaining after secondary HPLC fraction-
ation was too small for further spectral characterization
of the compounds. Therefore, fried salmon, in which
mutagen formation is about 30 times greater, was also

used as a source of mutagenic compounds. Basic ex-
tracts of commercially canned pink salmon produced
about five S. typhimurium TA 98 revertants per gram
of original product, while four separate lots of fried pink
salmon produced 177 + 39 TA 98 revertants per gram
of fried fish. Since the mutagen with intermediate re-
tention time comprised 65% of mutagenicity in fried
salmon, the most information was obtained on this sub-
stance. After sequential separations on C18 (twice) and
cyano columns, a UV absorption peak which corre-
sponded to the mutagenicity peak was observed during
a final amino column separation. The fractions contain-
ing mutagenicity were combined and the UV spectrum
in methanol exhibited a weak absorption maximum at
278 nm. It was evident from the direct probe mass spec-
trum (MS) of these combined fractions, however, that
several different compounds were present.
The MS fragmentation pattern exhibited significant

substituted aromatic hydrocarbon character (benzenes
and naphthalenes) but also contained a prominent peak
at mie = 224. The intensities of the mie = 223 and
mie = 225 peaks were approximately 78% and 23%,
respectively, of the intensity of the mie = 224 peak.
Felton and co-workers (57) have reported the presence
of a mutagen of mass 224 with UV maximum at 277 nm
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Table 12. Effects of nitrite and hypochlorite treatments on the
mutagenicity of IQ, MeIQ, MeIQx, Glu-P-2 and Trp-P-2, and

mutagens from canned and fried pink salmon.

% of control (mean and range)a
Nitrite Hypochlorite

Sample (20 mM) (0.018%)
Glu-P-2 2.9 (2.4-3.4) 1.1
Trp-P-2 3.3 (1-5) 0.9
2-Aminoanthracene 2.5 (1-4) 1.3
IQ 87 (76-98) 3.1
MeIQ 55 (44-74) 1.5
MeIQx 91 (87-95) 4.0

Basic extract (fried) 89 12

Mutagen 1 friedb 75 9.0
Mutagen 2 fried 80 12
Mutagen 3 fried 84 25

Mutagen 1 fried 87 9.0
Mutagen 2 fried' 83 9.0

Mutagen 1 friedd
Mutagen 2 friedd 84 (73-95) 5.0
Mutagen 3 friedd 78 3.4

Basic extract (canned) 78 66

Mutagen 1 (canned)d 63 21
Mutagen 2 (canned)d 84 21
Mutagen 3 (canned)d 90 20

'TA 98 revertants on plates with treated sample (nitrite or hy-
pochlorite treatment) divided by TA 98 revertants on plates with
same amount of untreated sample times 100. Each determination
consisted of the mean of two plates for each treatment.

b Fractions which contained mutagenicity after the initial C18 HPLC
fractionation.

cFractions containing mutagenicity after secondary C18 HPLC frac-
tionation.

d Fractions containing mutagenicity after final amino column HPLC
purification.

in fried beef. It may be that the major mutagen in fried
salmon is the same as one of the mutagens detected in
fried beef.

In any event, none of the three prominent mutagens
in canned or fried salmon exhibited HPLC retention
time patterns which matched those of the reference
compounds IQ, MeIQ, or MeIQx, and the nitrite sen-
sitivity was different than the pyrolysis type mutagens.
Thus it appears that the major mutagens in heated
salmon are different than the prominent ones in fried
ground beef, where MeIQx was found to be the most
abundant mutagen (47). Since the concentrations of free
amino acids, sugars, and creatine do not appear to be
markedly different in beef, pork, poultry, or fish mus-
cles, some other minor component seems to be respon-
sible for the differing rates and types of mutagens
formed in these different food products.

Summary
We can conclude that, of the major industrial food

processing techniques in common use, commercial ther-

mal processing or canning appears to be most likely to
produce mutagens. We have seen that browning type
and possibly other classes of reactions contribute to mu-
tagen formation during thermal processing, and that
mutagens can form at the relatively low process tem-
peratures and high moisture levels found in canned
products. The model systems proved to be a valuable
technique not only for investigating the chemical pro-
cesses involved in mutagen formation, but also for eval-
uation of strategies for reducing mutagenicity in whole
food products.
And finally, it should be noted that the levels of mu-

tagenicity found in even the most mutagenic canned
products are 2 to 15 times lower than the majority of
fried or grilled high protein foods. In the case of cooked
products, the consumer has the option of using lower
temperature cooking methods such as steaming or mi-
crowave to reduce or eliminate mutagen formation.
However, this option is not available for consumers of
canned foods, unless they choose not to purchase the
product. This represents a significant difference be-
tween cooked and commercially processed foods, and
brings us to some final questions for consideration.
These relate to the issue of regulating the mutagens
formed during thermal processing, especially if the mu-
tagens are found to be carcinogens. If these substances
are to be regulated, what form should the regulations
take? Should these compounds be considered naturally
occurring or added carcinogens? Should the canning pro-
cess be regarded in the same manner as food irradiation?
Currently the U.S. Food and Drug Administration has
no definite rules governing this situation, and it will be
interesting to observe how the food industry and reg-
ulatory agencies address these concerns in the future.

This research was supported in part by the University of Wash-
ington Institute for Food Science and Technology and the Egtvedt
Food Research Fund.
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